Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The ability to interpret graphs is foundational to understanding many science topics, although mastering this skill can prove challenging to many students. This article illustrates how a lesson on motion graphs was implemented in physical science classes using modern smartphone LiDAR technology. It also presents the differences in accessibility and student motivation that resulted from instruction with the novel technology as compared with commercially available sonic rangers. With the help of a free, publicly-available, gamified app, students used their walking movements to match motion graphs of increasing difficulty. Students demonstrated shifts in their intuition for making graphs and showed significant gains on a pre-post assessment. Teachers observed increased enthusiasm for learning about graphs with mobile devices.more » « less
-
Abstract This study explored teachers’ conceptualizations of integrated computational modeling in secondary physics by exposing twelve experienced physics teachers to programming and then analyzing interview responses. Responses revealed that teachers fell along a spectrum of disciplinary boundary–stretching mentalities. This paper presents a preliminary conceptual framework for exploring both horizontal (interdisciplinary) and vertical (intradisciplinary) boundary stretching, as well as for identifying bounded mentalities as teachers consider integration. Horizontal boundary stretchers envisioned opportunities to use computational modeling to shift their curriculum or pedagogical approaches in physics to help students enhance skills underlying multiple fields, while vertical boundary stretchers considered how computing might allow students to explore physics concepts more deeply. Teachers with more boundary-stretching indicators at the outset of an integrated curriculum development workshop were more likely to persist in the implementation of computational modeling–integrated materials in their physics classrooms than those who expressed more bounded thinking. These findings emphasize the importance of considering teachers’ perceptions about how their own science discipline is connected to similar fields and provide implications about how to identify potential adopters of innovative teaching approaches.more » « less
An official website of the United States government
